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A B S T R A C T

We developed a novel computer-aided diagnosis (CAD) system that uses feature-ranking and a genetic
algorithm to analyze structural magnetic resonance imaging data; using this system, we can predict conversion
of mild cognitive impairment (MCI)-to-Alzheimer's disease (AD) at between one and three years before clinical
diagnosis. The CAD system was developed in four stages. First, we used a voxel-based morphometry technique
to investigate global and local gray matter (GM) atrophy in an AD group compared with healthy controls (HCs).
Regions with significant GM volume reduction were segmented as volumes of interest (VOIs). Second, these
VOIs were used to extract voxel values from the respective atrophy regions in AD, HC, stable MCI (sMCI) and
progressive MCI (pMCI) patient groups. The voxel values were then extracted into a feature vector. Third, at the
feature-selection stage, all features were ranked according to their respective t-test scores and a genetic
algorithm designed to find the optimal feature subset. The Fisher criterion was used as part of the objective
function in the genetic algorithm. Finally, the classification was carried out using a support vector machine
(SVM) with 10-fold cross validation. We evaluated the proposed automatic CAD system by applying it to
baseline values from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (160 AD, 162 HC, 65
sMCI and 71 pMCI subjects). The experimental results indicated that the proposed system is capable of
distinguishing between sMCI and pMCI patients, and would be appropriate for practical use in a clinical setting.

1. Introduction

Alzheimer's disease (AD) is a form of progressive irreversible
dementia that occurs most frequently in older adults. AD gradually
defaces the regions of the brain that are responsible for memory,
thinking, learning, and other cognitive abilities [1]. It has been
estimated that the number of patients who suffer from AD will double
in the next two decades, and will reach 13.8 million people by 2050 [2].
In America, AD is one of the top 10 causes of death that cannot be
cured or prevented [1]. Early detection may help to clarify the
mechanisms underlying AD and to improve the quality of life for AD
patients [1,3].

Mild cognitive impairment (MCI), a prodromal stage of AD, is a

high-risk dementia condition in which acquired cognitive deficiency
has no significant effect on the functional activities of daily living [2].
Patients with MCI have an increased risk of eventually developing AD.
Recent studies have shown that up 20% of people aged 65 and older
may have MCI [2]. Recently, neuroimaging techniques, such as
structural magnetic resonance imaging (sMRI) [4–11], functional
MRI [12–14], diffusion tensor imaging [15–17], positron emission
tomography (PET), and single photon emission computed tomography
(SPECT) [18–21] have been used successfully for AD classification and
the prediction of MCI-to-AD conversion. Despite recent developments
in the early detection of AD, the prediction of disease progression is
still challenging and requires further investigation.

In this study, we present a computer-aided diagnosis (CAD) system
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that applies voxel-based morphometry (VBM) analysis to sMRI data in
order to make an early prediction of conversion to AD at between one
and three years before clinical diagnosis. Such prediction is useful in
determining a subject's clinical treatment plan or in judgment of the
clinical trial for basic drugs to treat AD. Data from sMRI of the brain
have been widely used to predict early conversion to AD, and VBM
analysis is a widely used approach for this purpose [11]. Many
researchers have used sMRI feature extraction for AD classification
or the prediction of MCI-to-AD conversion using a number of different
methods that include morphometry [22–24], measurement of the
hippocampus and the medial temporal lobe [25–31], regions of interest
(ROI)/volume of interest (VOI) [32–34], and gray matter (GM) voxels
in the automatic segmentation of images [35]. In this paper, we
propose an automatic feature-selection method based on feature
ranking and a genetic algorithm (GA) for AD classification and
prediction of MCI-to-AD conversion, which are the two most difficult
tasks in AD detection studies. The proposed feature-selection method
was realized by extracting voxel-values as raw-feature data from VOIs
obtained from VBM analysis. The extracted raw-feature vectors were
then reduced to lower-dimensional feature vectors using the proposed
feature-selection method.

In addition, we extracted features from stable MCI (sMCI) and
progressive MCI (pMCI) samples based on GM atrophy patterns in AD
subjects and HCs. We then evaluated the performance of the proposed
method on baseline data from 458 samples from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) dataset (160 AD, 162 HC, 65
sMCI and 71 pMCI subjects). In a direct comparison, the proposed
CAD system exhibited better performance than classifiers using all raw
features and principal component analysis (PCA) data reduction. The
accuracy of the proposed CAD system for classifying AD/HC and sMCI/
pMCI using baseline sMRI data was 93.01% and 75%, respectively. In
addition, when compared to state-of-the-art techniques for predicting
MCI-to-Alzheimer's conversion, the experimental results show that the
performance of the proposed CAD system was comparable to that of
alternative methods using only baseline MRI data.

2. Materials

2.1. Image acquisition and samples

The baseline MRI scans and data used in this work were obtained
from 3 T T1-weighted images, which were typically 240 × 256 × 176
voxels with a voxel size of 1 mm × 1 mm × 1.2 mm. MR image
corrections such as GradWarp and N3 were also applied to correct the
geometric distortion caused by gradient non-linearity [36] and bias
field, respectively, and to balance the lack of homogeneity due to the
absence of uniformity in the radio frequency receiver coils [37]. We
divided the dataset into two main groups. The aim was to separate the
data used for VBM-based 3D mask generation from the data used for
classification. Group 1 (including 68 AD patients and 68 healthy
controls (HCs)) was used to model the VBM 3D mask. Group 2
(including 92 AD, 94 HC, 65 stable MCI (sMCI) and 71 progressive
MCI (pMCI) subjects) was used for feature extraction, classification
and validation. The samples in Groups 1 and 2 were totally indepen-
dent. We used only baseline data.

2.2. Defining volumes of interest (VOIs) (Group 1)

Group 1 consisted of 136 subjects divided into HC and AD cohorts.
Table 1 shows details of the demographics and clinical characteristics
of the samples used in Group 1. We used this group in the VBM
analysis to find regions of GM atrophy in patients with AD compared to
the HCs. These regions were segmented as a 3D mask to extract voxel
values in the feature-extraction stage. The data used to define the VOI
and respective 3D mask were the same as previously reported [38].

2.3. Feature extraction and classification (Group 2)

Group 2 consisted of 322 samples that were divided into 4 cohorts:
1) AD subjects; 2) HC subjects; 3) sMCI subjects, where MCI had been
diagnosed for at least 36 months; and 4 pMCI subjects, where there
was a baseline MCI diagnosis but conversion to AD had occurred
within 1, 2 or 3 years since the baseline. Details of the demographic
and clinical characteristics of the samples used in this paper are shown
in Table 2.

3. Methodology of the proposed computer-aided design
(CAD) system

In this section, we introduce the methodology used to develop the
proposed automatic CAD system, based on feature ranking, followed by
a GA for early detection of conversion from MCI to AD. First, the 3D
T1-weighted MRI data samples from Group 1 were processed using
VBM analysis to identify GM regions that were significantly more
atrophied in the AD patients than the HCs. The regions of GM atrophy
were used to form VOIs, which defined the 3D mask to be used for
feature extraction. We then used the 3D mask generated using the
Group 1 samples from the first stage of the CAD process, i.e., the
derivation of VOIs, to extract voxels as raw features from the subjects
in Group 2. In the training set, a statistical t-test was then used to rank
the raw features. Features with t-test values higher than 70% of the
highest t-test value were considered to be a subset of the top-ranked
features of the entire set to be used by the GA to find the optimal
features. This threshold provided a good trade-off between the
computational cost and accuracy. This subset (i.e., the top-ranked
features) was applied to the GA with the Fisher criterion as part of the
objective function to identify the optimal distinctive features with the
minimum number of selected features. The Fisher criterion helped in
selecting an optimal subset of features with the most distinctive
information for the classification process. Finally, a linear SVM
classifier was used to evaluate the proposed technique. Fig. 1 illustrates

Table 1
Characteristics of the subjects used to model the VBM 3D mask (Group 1).

AD HC
(n=68) (n=68)

Age (mean) 74.33 ± 6.41 74.14 ± 4.95
Range [60–82] [66–84]
MMSE (mean) 22.83 ± 2.56 29.38 ± 0.71
Range [16–25] [28–30]
CDR (mean) 0.75 ± 0.41 0.0 ± 0
[0/0.5/1/2] [0/44/19/5] [68/0/0/0]
f/m 34/34 34/34

Note: AD, Alzheimer's Disease patients; CDR, Clinical Dementia Rating; HC, Healthy
Control patients; MMSE, Mini-Mental State Examination; F, Female; M, Male.

Table 2
Characteristics of the subjects used for feature extraction and classification (Group 2).

AD HC sMCI pMCI
(n=92) (n=94) (n=65) (n=71)

Age (mean) 75.32 ± 6.46 73.35 ± 5.68 70.86 ± 7.04 74.27 ± 7.78
Range [60–90] [55–81] [55–88] [56–88]
MMSE (mean) 23.45 ± 2.45 29.73 ± 3.85 27.80 ± 1.48 26.05 ± 2.87
Range [18–25] [27–30] [25–30] [23–30]
CDR (mean) 0.72 ± 0.39 0.00 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
[0/0.5/1/2] [0/58/30/4] [94/0/0/0] [0/65/0/0] [0/71/0/0]
f/m 50/42 50/44 39/26 44/27

Note: All data are presented in mean ± standard deviation mode. AD, people with
Alzheimer's disease; CDR, Clinical Dementia Rating; HC, healthy control participants;
sMCI, stable Mild Cognitive Impairment; pMCI, progressive Mild Cognitive Impairment;
MMSE, Mini-Mental State Examination; F, Female; M, Male.
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the framework of the proposed automatic CAD system.

3.1. Magnet resource imaging (MRI) preprocessing

Preprocessing of the MRI data was carried out using SPM8 software
(http://www.fil.ion.ucl.ac.uk/spm) and the VBM8 toolbox (http://
dbm.neuro.uni-jena.de/vbm). VBM is an advanced technique that is
used to assess the structure of the whole brain with voxel-by-voxel
comparisons between subject groups to distinguish degenerative
diseases with dementia [39]. Several recent studies have used the
VBM method for the early detection of atrophic changes in AD [39–
43]. In the present study, the Diffeomorphic Anatomic Registration
Through Exponentiated Lie (DARTEL) approach was used as a part of
the VBM analysis to enhance inter-subject registration of the MRI
images [44,45]. In the VBM8 toolbox, all 3D MR images were corrected
for the bias field with regard to homogeneity. The corrected images
were normalized and then segmented into GM, white matter (WM),
and cerebrospinal fluid (CSF) components. Using a nonlinear
deformation, the normalized segmented images were modulated.
Only GM components were considered in the current study. All GM
components were spatially smoothed with an 8 mm full-width half-
maximum Gaussian kernel. After spatial preprocessing, the smoothed,

modulated, DARTEL-warped, and normalized GM datasets from
Group 1 were used for statistical analysis, whereas datasets from
Group 2 were used in the feature extraction phase. The levels of
atrophy in regional GM volume were generated by voxel-based analysis
over the whole brain for Group 1 subjects. In this manner, the
smoothed, modulated, DARTEL-warped, and normalized GM
datasets of Group 1 were subjected to the general linear model to
detect GM volume changes using voxel-wise two-sample t-tests in
SPM8. Age was added to the matrix design as a nuisance variable.
Absolute threshold masking was adjusted at 0.1 to avoid possible edge
effects among GM, WM or CSF components. Significance was set at p <
0.01, with correction for family-wise error (FWE), and the threshold
was set at 1400 voxels for two-sample comparisons. Fig. 2 illustrates
the processing framework of the VBM analysis used to identify
significant levels of GM atrophy in the AD relative to the HC samples
in Group 1 through SPM8.

3.2. Feature extraction

The feature-extraction procedure based on the preprocessing
analysis was then applied to isolate the VOIs. Brain regions with
significantly decreased GM volumes, obtained using VBM analysis in

Fig. 1. Pipeline of the proposed automatic CAD system.
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AD patients relative to HCs in Group 1 subjects, were segmented as a
3D mask. Because sMCI samples appear more healthy, whereas pMCI
samples are closer to AD [46], we decided to use the 3D mask not only
to extract features for AD and HC samples but also for pMCI and sMCI
subjects. The mask was therefore applied to all the smoothed, normal-
ized, modulated, DARTEL-warped, GM density volumes obtained from
the preprocessing stage in Group 2 subjects (92 AD, 94 HC, 65 sMCI
and 71 pMCI subjects) in order to extract voxel values from atrophy
regions as raw-feature vectors.

3.3. Feature selection

As the number of samples available for training is generally very
small in comparison to the dimensionality of feature vectors extracted
from MRI data (e.g., 36,529 voxels), training an accurate classifier is a
challenging process. Many recent studies have explored different
feature-selection methods to address this issue. In this study, we chose
a novel feature-selection method for high-dimensional data, which
combines feature ranking with a GA to reduce the dimensionality, and
to select optimal features for the high performance MCI conversion

prediction and AD classification. The performance of this method was
evaluated using PCA data reduction and raw-feature vectors.

3.3.1. Feature reduction based on principal component analysis
(PCA)

The aim of the feature-reduction algorithm was to make available a
set of new features to generate a low-dimensional representation of the
original data. PCA is a statistical feature-reduction method, which
helps extract a set of orthogonal principal components (PCs) from an
original dataset [47,48]. Linear combinations of PCs are used to
represent high-dimensional original data. Let Γ f f f= [ , , ..., ]M1 2 be a
feature dataset including M features, where f x x x= ( , , ..., )j j j

N
j T

1 2 is a
vector of values of a feature f j and N represents the number of
samples. PCs are eigenvectors of the gamma matrix of data X as
follows:

∑
N

Γ Γ Γ Γ= 1 ( − ) ( − ),T
(1)

where Γ is the mean vector of each feature. Each PC is measured by its
corresponding eigenvalue.

Fig. 2. The VBM plus DARTEL processing pipeline to reveal significant gray matter atrophies among group 1 samples using SPM8.
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In this study, 10-fold cross validation was used to measure the
performance of the classifiers. Ten-fold cross validation takes 90% of
data through the training process and 10% through the testing of each
clinical group (i.e., the AD/HC and sMCI/pMCI groups). The number
of PCs, k, used to generate the projection vectors of the training and
testing data was chosen based on the maximum number of training
samples for the AD/HC and sMCI/pMCI pairs, respectively.

3.3.2. Feature ranking
Feature ranking helps evaluate the relevance of features and class

variables in order to choose the most distinctive features. This method
is effective in data with very high dimensionality [49]. Many research-
ers have investigated different feature-ranking methods as part of
feature selection in the pattern recognition field [50–56]. Let
Γ f f f= [ , , ..., ]M1 2 be a feature dataset including M features. The vector
f x x x= ( , , ..., )j j j

N
j T

1 2 is a vector of values of a feature f j where xi
j of this

vector shows a feature value of the sample ith and N is the number of
samples. Applying a feature ranking algorithm to the feature data-set Γ
generates a list of the features Ω f f f= [ *, * , ... , * ]M1 2 ordered by reduction
importance. In this study, we used a statistical indicator, namely the t-
test, to measure the level of separation/discrimination between two
classes. T-test feature ranking has been used successfully in a number
of machine learning studies [57–59]. The t-test measures the statistical
significance of the value differences between two classes, as follows:

t value
μ μ

− =
−

+
,c c
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n

σ
n

1 2

c
c

c
c

1
2

1
2

2

2 (2)

where μc1, σc1
2 , nc1 and μc2, σc2

2 , nc2 are the mean, variance values, and
number of samples of two classes, c1 and c2, respectively. To select the
top informative features, all features were ranked according to the
absolute value of their t-values. Based on feature ranking, we were able
to choose the top discriminative q ranked features f f f[ *, * , ... , * ]q1 2 , where
q M≤ .q could be adjusted by the user or determined experimentally. In
the present study, q was adjusted with features that were higher than
70% of the maximum t-test values of the training set in each fold. This
threshold provided a good trade-off between computational cost and
accuracy.

3.3.3. Feature selection using a genetic algorithm (GA)
In this section, we describe the GA used to find the optimum feature

subset from the candidate features. We used a binary GA in this study.
A chromosome was encoded as an array with length q bits containing
binary numbers, as shown in Fig. 3. When chromosome [ith] is 1, the ith

feature is selected as the optimal feature from the candidate features,
otherwise the ith feature is not selected. The main components of the
GA comprised population initialization, fitness evaluation, selection,
crossover and mutation operations, and termination judgment. The
pipeline of the GA is illustrated in Fig. 4. The details of the main
components are given below:

a) Initial population. In the binary GA, the population consisted of all
the chromosomes in each generation, which were coded as a binary
string. In this study, we used a random population base for
population initialization.

b) Fitness function. In order to select the optimal feature subset from the
candidate features, the following objective function was proposed:

Z
Z E α RF
min

= (1 + . ),
(3)

where E is based on the Fisher criterion and calculated in the
training part of each fold, α is a constant coefficient and RF is the
ratio of the number of selected features (number of selected
features/length q). The objective function finds the optimal features
with the maximum discriminative and minimum number of fea-
tures. In this study, the value of α was adjusted to 0.5. The Fisher
criterion evaluates the class separation between two groups of data
and also helps to find the optimal features with the most discrimi-
native information for the classification process. The Fisher criter-
ion was calculated as follows:

FC trace S
trace S

= ( )
( )

,B

W (4)

where SB is the between-class scatter matrix and SW is the within-
class scatter matrix [60]. For two classes, c1 and c2, the between-
class scatter and within-class scatter matrices are defined as
[62,63]:

S μ μ μ μ= ( − )( − )B
T

1 2 1 2 (5)

∑ ∑S X μ X μ X μ X μ= ( − )( − ) + ( − )( − )W X c i i
T

X c i i
T

∈ 1 1 ∈ 2 2i i1 2

(6)

where μ1 is the mean of the data in class 1 and μ2 is the mean of the
data in class 2. Because the proposed objective function is based on
minimization, we used FC = trace S

trace S
−1 ( )

( )
W
B

as E in Eq. (3).

c) Selection operator. The aim of selection operation is to select the
parent individuals, which will participate in producing offspring for
the next generation. In this study, we used a roulette wheel
selection technique [50].

d) Crossover operator. The goal of the crossover operator is to
generate new individuals by recombining the genes of the chromo-
somes. In the proposed GA, the following crossover operators were
used: single point, double point, and arithmetic. For each iteration
in the GA process, one of the above crossover operators was
randomly selected based on the wheel selection technique.

e) Mutation operator. The mutation operator is normally initiated
after the crossover process by randomly inverting one bit of an
individual's chromosome to generate a child.

f) Termination judgment. In the proposed feature-selection GA, the
termination algorithm was either based on a predefined number of
iterations or based on β iterations, where the difference between
two objective functions does not exceed ε. In this study, the values
of ε and β were adjusted to 10−3 and 30, respectively.

Algorithm 1 outlines the pseudo-code used in the proposed method.

Algorithm 1.. The procedure for determining the optimal subset of
features based on the feature ranking and genetic algorithm.

• V ← component_set (DataTrain, LabelTrain)

• Ranked features ← t-test feature ranking (V)

• Top ranked features ← The features higher than 70% of the
maximum t-test values

• Z ← ∞

• Generate an Initial population

• While not terminated condition

• (Sw,SB) ← compute_scatter (selected_features, LabelTrain)

• E ← trace S
trace S

( )
( )

W
B• q ← length of top-ranked features

• RF ← number of selected features/q

• α ← 0.5
Fig. 3. Feature representation as chromosome in Binary GA.
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• Z ← E α RF(1 + . )
• Calculate Z ← for each chromosome from the population

• Make the next population
1. Selection operator
2. Crossover operator
3. Mutation operator

• End while

• Find the chromosome with minimum Z

• Select the optimal- feature-subset

3.4. Classifier and performance evaluation

The classifier was operated using an SVM algorithm, a supervised
learning method that has been widely used for AD classification
problems [6,38,46,62–64]. In this study, an SVM algorithm using
LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) with a linear
kernel was used for the AD classification and the prediction of MCI-
to-AD conversion. In order to achieve a reliable measurement, all
performance results were obtained through 10-fold cross validation.
The classification results were calculated by means of accuracy (ACC),
sensitivity (SEN), specificity (SPE), and area under the curve (AUC).
These parameters are defined as follows:

ACC TP TN
TP FP FN TN

= +
+ + + (7)

SEN TP
TP FN

=
+ (8)

SPE TN
TN FP

=
+

,
(9)

where TP, TN, FN, and FP stand for true positive, true negative, false
negative, and false positive, respectively.

4. Experimental results

The experimental data consisted of 458 samples from the ADNI
dataset. We first arrived at the results of the preprocessing stage using
a VBM and DARTEL analysis on 3D T1-weighted MRI scans to reveal
the significance of the difference in volumetric regions with atrophy
between the AD subjects in Group 1 and the HCs in the same group.
Secondly, we used a 10-fold cross validation process to compare the
performance of the proposed feature-selection method for AD classi-
fication and the prediction of MCI-to-AD conversion between a trial
with PCA data reduction and a trial without feature selection (i.e., using
all features). ACC (%), SEN (%), SPE (%), and AUC (%) performance
metrics were used to assess the different scenarios.

4.1. Voxel-based morphometry on gray matter (GM) (Group 1)

The VBM and DARTEL analysis revealed significant GM atrophy in
the right and left hippocampi, the right inferior parietal lobule, and the
right anterior cingulate in patients with AD compared to the HCs in
Group 1. Fig. 5 shows the significant regions of GM atrophy in the
Group 1 subjects. The voxel locations of these significantly atrophied
regions were segmented as a 3D mask. This mask was applied to the
GM density volume results from the segmentation step in the VBM-
DARTEL analysis of Group 2 to extract a total of 36,529 voxel values as
a raw-feature vector.

4.2. Classification results for Alzheimer's disease (AD) and healthy
control (HC) subjects

As described in Section 3.3, the proposed feature-selection method
was accomplished with a feature-ranking strategy and by using a GA to
find optimal top discriminative feature data from raw-feature vectors.
The parameters of GA, such as the number of populations, number of
iterations, probability of crossover and probability of mutation, were

Fig. 4. Flowchart of the Genetic Algorithm.

Fig. 5. Significant gray matter atrophy regions in subjects of group 1 [The image is reproduced from a previous study [38]].
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set at 50, 200, 0.8 and 0.3, respectively. As an example, Fig. 6 shows all
t-test values for the data in the training set from fold 1 of the HC vs AD
samples in Group 2. The maximum t-test value is 15.24. Based on the
proposed approach to choose the features higher than 70% of the
maximum t-test values, the features with respective t-test values
between 10.67 and 15.24 were selected. As a result, 5101 top-ranked
features were selected as the top subset of the most discriminative
features. This subset was applied to the GA to find the optimum subset
based on GA feature selection, with the Fisher criterion as part of the
objective function. A total of 1913 features were selected as belonging
to the optimal and high-performance feature subset. Table 3 shows the
accuracy performance of data from fold 1 of the HC vs AD samples in
Group 2 for raw-feature vectors together with the proposed feature
selection based on feature ranking and the GA. As can be seen by the
data in Table 5, the proposed method is able to improve the
performance accuracy to a significant degree, and can also minimize
the number of selected features to speed up the learning process.
Table 4 presents the average of the performance obtained by 10-fold
cross validation between the AD and HC samples from Group 2. With
186 samples for classification in Group 2 (i.e., 94 HCs and 92 AD
subjects), a 10-fold cross validation suggested 167 PCs through the
PCA process for AD and HC classification. Thus, the number of PCs was
chosen as k=167 to generate the projection vectors for the training and
testing data. To evaluate the overall performance of the proposed
method, PCA data reduction and raw features, a receiver operating
characteristic (ROC) curve for AD and HC classification was generated
and is shown in Fig. 7(a). Looking at Table 4 and Fig. 7(a), it is clear

that the proposed feature-selection method, based on feature ranking
and the GA, improves performance to a significant degree when
compared to classification using raw features or PCA data reduction.
For example, the mean accuracy increases from 87.63% to 93.01% for
AD/HC. Our accuracy of 93.01% for AD/HC compares well with other
recent classification experiments for separating AD data from HC
results, based on MRI data [8,63,65].

4.3. Prediction results for the conversion of stable and progressive
MCI to AD

As described in Section 3.2, the GM atrophy pattern between AD
subjects and HCs was used to extract significant features from sMCI
and pMCI subjects. Table 5 presents the ACC, SEN, SPE, and AUC
measurements obtained from 10-fold cross validation for the MCI
conversion prediction between sMCI and pMCI subjects. With 136
samples (i.e., 65 sMCI and 71 pMCI subjects), a 10-fold cross
validation suggested 122 PCs through the PCA process for this task.
Thus, the number of PCs was chosen as k=122 to generate the
projection vectors for the training and testing data. Fig. 7(b) shows
the ROC curves related to the proposed method, PCA data reduction
and raw features for the sMCI and pMCI conversion prediction. As can
be seen in Table 5 and Fig. 7(b), the proposed feature-selection
method, based on feature ranking and the GA, consistently outper-
forms the PCA data reduction or raw features for MCI conversion
prediction. For example, the proposed method had an ACC perfor-
mance of 75%, whereas PCA-based data reduction and the raw-feature
vector methods had ACCs of 69.11% and 68.38%, respectively, for
distinguishing sMCI subjects from pMCI subjects. The 75% accuracy of
our proposed method with regard to sMCI and pMCI conversion within
36 months compares well with other recent classification experiments
on the separation of sMCI from pMCI results using MRI data
[8,10,46,63,65–68].

5. Discussion

Many recent studies have investigated the use of advanced pattern
analysis methods to extract complex spatial patterns from the brain
structure [13,35,66,69,70]. This is especially the case for high-dimen-
sional pattern analysis in a number of neuroimaging studies
[6,33,71,72]. For example, in one study [71], the authors introduced
an SVM-recursive feature elimination (SVM-RFE) technique for fea-
ture ranking, and used SVM for classification. In another study [6], the
authors introduced a statistical feature-selection method based on the
probability distribution function (PDF) of the VOI to generate a
statistical pattern of the VOI to represent the entire sMRI. In the
present study, we introduced an automatic feature-selection method
based on feature ranking and a GA for the VOI, which is able to select

Fig. 6. t-test values for the respective ranked features in fold 1 training of AD/HC classification.

Table 3
Classification results in fold 1, HC vs AD.

Feature selection Number of features ACC (%)

NO 36529 78.94
Yes (proposed method) 1913 94.73

Note: ACC, Accuracy; AD, people with Alzheimer's disease; HC, healthy control
participants.

Table 4
Comparison of the performances of the proposed feature selection method with raw-
feature vectors and PCA data reduction for AD classification.

Feature Selection ACC (%) SEN (%) SPE (%) AUC (%)

HC vs AD No 87.63 85.86 89.36 88.70
PCA 88.70 89.36 88.04 88.70
Proposed method 93.01 89.13 96.80 93.51

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; AD,
people with Alzheimer's disease; HC, healthy Control participants; PCA, Principal
Component Analysis.
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the most discriminative features from a high-dimensional pattern into
a lower-dimensional space. In the proposed feature-selection strategy,
the Fisher criterion was employed as part of the objective function to
find the most discriminative features as an optimal subset. The Fisher
criterion helps to select the optimum subset of features with maximum
separation between two groups. Using a GA, the proposed feature-
selection method not only selects the top discriminative features but
also minimizes the dimensionality of the input vectors to low-dimen-
sional space. The experimental results indicate that the proposed
feature-selection approach is suitable for high-dimensional pattern
recognition, especially for MCI conversion prediction and AD classifi-
cation. Recent studies have shown that MCI (including both pMCI and
sMCI) is a heterogeneous condition where sMCI patients appear more
healthy and pMCI patients appear closer to AD [46]. In addition, most
of the existing methods for MCI conversion prediction use data taken
directly from MCI subjects, ignoring data from other related domains
(i.e., AD subjects and HCs) that may provide significant additional data
predicting MCI conversion [46]. In this study, we defined a VBM mask
based on regions of GM atrophy from AD and HC subjects for feature

extraction using pMCI and sMCI subjects. The experimental results
demonstrate that extracting features from sMCI and pMCI samples
based on GM atrophy patterns in AD subjects and HCs through VBM
analysis can also be useful for MCI prediction. Although the proposed
method demonstrated a desirable performance for AD detection and
MCI conversion prediction, some limitations should be considered in
the present study. First, we evaluated the proposed method on an
ADNI dataset. In the future, it will be important to evaluate our method
using other datasets. Second, we used a small data-sample size,
especially for to predict the conversion from MCI to AD (i.e., 65
sMCI and 71 pMCI). This would be worth evaluating on a large dataset
in the future. As part of a future study, we suggest employing other
meta-heuristic optimization algorithm such as simulated annealing,
particle swarm optimization and ant colony optimization for AD
classification and MCI conversion prediction. Another priority for
future studies will be to use volumetric subcortical measures from
structural MRI instead of voxel-based features.

5.1. Comparisons with other studies

Several studies have investigated neuroimaging techniques for the
early detection of AD, with a focus on conversion in MCI subjects and
separating AD patients fromHCs. In one study [65], researchers proposed
a multitask learning method based on multimodality data such as MRI,
fluorodeoxyglucose positron emission tomography (FDG-PET), and CSF.
They reported an accuracy of 93.30% and 73.9% on AD/HC and pMCI/
sMCI samples, respectively. One study [73] used cortical thickness data
with the manifold harmonic transform method using MRI data. They
achieved an SEN of 82% and an SPE of 93% on AD/HC, and an SEN of
63% and an SPE of 76% on sMCI and pMCI samples, respectively.
Another study [74] presented a morphological factor method with an ACC

Fig. 7. The ROC curve of the proposed method, PCA data reduction and raw-feature-vectors. (a) AD/HC and (b) pMCI/sMCI.

Table 5
Comparison of the performances of the proposed feature selection method with raw-
feature vectors and PCA data reduction for MCI conversion prediction.

Feature selection ACC (%) SEN (%) SPE (%) AUC (%)

pMCI vs sMCI No 68.38 67.69 69.01 68.93
PCA 69.11 64.61 73.23 68.38
Proposed method 75.00 76.92 73.23 75.08

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; sMCI,
stable Mild Cognitive Impairment; pMCI, progressive Mild Cognitive Impairment; PCA,
Principal Component Analysis.
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of 72.3% from MRI data on sMCI and pMCI subjects. In that study [68],
the authors investigated a Gaussian process approach using several
combined multimodality data sources (i.e., MRI, PET, CSF, and APOE
genotypes). They reported a balanced ACC of 74.1% on sMCI/pMCI
groups. Another study [67] used multimodality data (MRI and PET) with
a multitask feature-selection method with an accuracy of 94.37% and
67.83% on AD/HC and pMCI/sMCI samples, respectively. In one study
[66], the researchers combined statistical analysis and pattern classifica-
tion methods by using multimodality data (MRI and CSF) with an ACC of
61.7% on pMCI/sMCI samples. Another study [8] investigated a multi-
variate data analysis method using multimodality data (i.e., MRI and
CSF). The researchers reported an ACC of 68.5% on pMCI/sMCI data and
an ACC of 91.8% on AD and HC data. In their study [46], the authors
introduced domain transfer learning using multimodality data (i.e., MRI,
CSF and PET), with an ACC of 79.4% on pMCI/sMCI samples. In another
study [10], the authors employed VBM analysis of GM as a feature,
combining age and cognitive measures. They reported an ACC of 82% on
pMCI/sMCI samples. In another study [63], the authors presented a
multiscale feature extraction from baseline MRI data. They reported an
ACC of 84.13% in the classification of AD/HC and 76.69% for prediction
of pMCI/sMCI. Tables 6, 7 show the detailed parameters of classification
performance using various methods for the AD/HC and pMCI/sMCI
classifications, which were the main tasks in the current study. As can be
seen in Tables 6, 7, the performance of the proposed system was highly
competitive for the performance terms when compared to the other
systems reported in the literature for AD classification and the prediction
of MCI-to-AD conversion.

6. Conclusion

In this paper, we proposed a novel and automatic feature-selection
method, based on feature ranking and a GA, to select the optimal

features with maximum discriminative and minimum numbers of
selected features for MCI conversion prediction and AD classification.
In the proposed method, we used the Fisher criterion as part of the
objective function in the GA in order to evaluate the feature subsets.
The proposed feature-selection method not only selects the top
discriminative features but also minimizes the dimensionality of the
input vectors to low-dimensional space. The experimental results
demonstrate that a combination of feature ranking and GA is a reliable
technique for MCI conversion prediction and early detection of AD,
especially with regard to high-dimensional data pattern recognition. In
addition, the experimental results show that the GM atrophy pattern in
AD subjects and HCs, as shown in VBM analysis, can be useful for
extracting features from sMCI and pMCI samples. The performance of
the proposed CAD system was measured on 458 subjects from the
ADNI dataset using 10-fold cross validation. The experimental results
show that the performance of the proposed approach can compete
strongly with state-of-the-art techniques using MRI data, as reported in
the literature.
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